Synthesis and Characterization of a Novel Azatitanatrane

Zhibang Duan and John G. Verkade*

Department of Chemistry, Iowa State University, Ames, Iowa 50011

Received January 27, 1995[®]

Azatitanatrane $[Ti(i-PrNCH_2CH_2)_2NCH_2CH_2N]_2$ (13) is obtained in 44% yield by the reaction of $Ti(NMe_2)_4$ with the new ligand (i-PrNHCH₂CH₂)₂NCH₂CH₂NH₂. Compound 13, which features a dimeric structure as determined by ¹H, ¹³C{¹H}, and ¹H¹H NOESY NMR techniques and mass spectroscopy, exhibits a rigid configuration in solution on the NMR time scale. The structure of the azatitanatrane $Me_2NTi(MeNCH_2CH_2)_3N$ (1) was determined by single-crystal X-ray crystallography and was shown to exhibit unusually short axial Ti-N bonds. Crystal data: monoclinic, space group $P_{21/c}$, a = 7.9550(7) Å, b = 10.546(2) Å, c = 18.105(2) Å, $\beta = 97.365(8)^{\circ}$, V = 1506.4(3) Å³, Z = 4, R = 0.0373.

Introduction

Titanium nitride, TiN, exhibits interesting properties such as metallic behavior, a high melting point, hardness, and inertness to most chemicals, allowing many potential applications. For example, it can be used as a wear-resistant coating on tools,¹ as a gold substitute for decorative coatings and for thin film resistors,^{2,3} as reflectance and hardness coatings for microelectronic devices,^{4,5} and as a diffusion barrier in various semiconductor metalization schemes.⁶⁻⁹ During our exploration of the chemistry of atranes,¹⁰ we became interested in synthesizing candidates for the MOCVD of metallic and non-metallic nitrides. In the case of titanium, such compounds are represented by structures 1-4.

Compounds 1-3 have been synthesized and characterized by us,¹¹ but compound **4** has thus far resisted synthesis, probably owing to the more bulky nature of the tetraamine ligand in 4 than in 1-3. Compound 1 was evaluated as a potential precursor for the growth of TiN thin film. However, the TiN film obtained from liquid 1 was contaminated with titanium carbide perhaps from impurities in 1.11c Thus compound 1 of better purity may be required. We demonstrate here that 1 is actually crystalline at room temperature and also report its

- [®] Abstract published in Advance ACS Abstracts, July 1, 1995.
- (1) Schintlmeister, W.; Pacher, O.; Pfaffinger, K. J. Electrochem. Soc. 1976, 123, 924.
- Hirose, M.; Yasui, T. S. M.; Ochi, Y.; Nakagawa, M. Eur. Patent, EP (2)68464, 1983.
- (3) Buhl, R.; Pulker, H. K.; Moll, E. Thin Solid Films 1981, 80, 265.
- (4) Suzuki, K.; Tada, M.; Oyama, T.; Suzuki, S. JP 01 308 848, 1989.
- (5) Ogita, M.; Yokoyama, K. JP 02 68926, 1990.
 (6) Ting, C. Y. J. Vac. Sci. Technol. 1982, 21, 14.
- (7) Wittmer, M. Appl. Phys. Lett. 1980, 37, 540.
- (8) von Seefeld, H.; Cheung, N. W.; Maenpaa, M.; Nicolet, M.-A. IEEE Trans. Electron Devices 1980, 27, 873.
- (9) Cheung, N. N.; von Seefeld, H.; Nicolet, M.-A.; Ho, F.; Iles, P. J. Appl. Phys. 1981, 52, 4297.
- (10) Verkade, J. G. Acc. Chem. Res. 1993, 26, 483.
- (11) (a) Naiini, A. A.; Menge, W. M. P. B.; Verkade, J. G. Inorg. Chem. 1991, 30, 5009. (b) Duan, Z.; Naiini, A. A.; Lee, J.-H.; Verkade, J. G. Inorg. Chem., in press. (c) Tuttle, G.; Shinar, R; Verkade, J. G. Manuscript in preparation.

crystal structure. Experiments on the growth of TiN thin films from 1 revealed that when ammonia was passed through the reactor during MOCVD, the N/Ti ratio of the film improved.^{11c} This prompted us to consider new precursors such as 5-8 which might generate ammonia during pyrolysis by elimination of an NH₂ group from the axial position and a hydrogen from an equatorial nitrogen.

Because of the very unstable and explosive properties of Ti- $(NH_2)_4$,¹² we did not attempt a transamination approach to the synthesis of 5-8. Instead, complexes 9 and 10 were considered to be the best starting materials for our initial attempts, owing to the possibility of nucleophilically substituting the chloride with an amide. Here we show, however, that 9 was obtained as an oligomer or polymer and that attempts to make 10 failed because of polymerization as well as some unexpected reactions. Thus we turned our attention to the synthesis of 11 by transamminating Ti(NMe₂)₄ with the new tren derivative (i- $PrNHCH_2CH_2)_2NCH_2CH_2NH_2$ (*i*- Pr_2 -tren, **12**). The model compound 11 might be expected to eliminate gaseous HNMe₂ under pyrolysis conditions and because of this might give improved MOCVD properties to the extent that Me₂NH could mimic NH₃ in providing a source of nitrogen. However, we show here that 11 is unstable with respect to the elimination product 13 which is formed immediately as determined by NMR and mass spectroscopies. Although azametallatrane dimers derived from trisubstituted tren ligands have recently been reported from this group for group 13 elements,¹³ compound 13 is the first example of a dimeric complex obtained directly

⁽¹²⁾ Schmitz-DuMont, O.; Mietens, G.; Ross, B. Angew. Chem. 1963, 75, 792

^{(13) (}a) Pinkas, J.; Wang, T.; Jacobson, R. A.; Verkade, J. G. Inorg. Chem. 1994, 33, 4202. (b) Pinkas, J.; Wang, T.; Jacobson, R. A.; Verkade, J. G. Inorg. Chem. 1994, 33, 5244.

from a disubstituted tren ligand. We also show that 13 is rigid in solution on the NMR time scale.

Experimental Section

General Procedures. All reactions were carried out under argon with strict exclusion of moisture using standard Schlenk or drybox techniques.¹⁴ Solvents were dried over and distilled from Na/ benzophenone under nitrogen and stored over 4 Å molecular sieves under an argon atmosphere prior to use. *n*-Butyllithium as 2.5 or 2.0 M solutions in hexane or cyclohexane, respectively, were purchased from Aldrich. Tren ((H₂NCH₂CH₂)₃N) was distilled under vacuum after receipt as a kind gift from the Hampshire Chemical Co. Ti(NMe₂)₄¹⁵ and Me₃-tren ((MeNHCH₂CH₂)₃N)¹⁶ were prepared using literature methods.

NMR spectra were recorded at 20 °C (unless otherwise stated) on a Nicolet NT 300 (¹H) or a Varian VXR 300 with deuterated solvents as an internal lock. The 2D NOESY experiment was performed with a mixing time of 0.5 s. ¹H NMR (299.949 MHz) spectra were referenced to the chemical shift of the residual proton signal from the deuterated solvent or from Me₄Si as the internal reference. ¹³C (75.429 MHz) spectra were referenced to solvent signals. Mass spectra were obtained on a Finnigan 4000 instrument or a Kratos MS-50 spectrometer. FT-IR spectra were taken on an IBM IR-98 or a DigiLab FTS-7 FTIR spectrometer using KBr pellets. Melting points were measured in sealed capillaries with a Thomas-Hoover apparatus.

Purification of 1. This compound, synthesized according to our published method,^{11a} in our hands was isolated as an oily slurry which was then placed on filter paper to absorb the oil. Sublimation of the remaining crude solid at 80 °C/10 × 10⁻³ mmHg followed by recrystallization of the sublimate from pentane at -30 °C gave an overall yield (based on Me₃-tren) of 52%: ¹H NMR (C₆D₆) δ 3.284 (s, 9 H, CH₃), 3.278 (s, 6 H, N(CH₃)₂), 3.160 (t, 6 H, ³J_{HH} = 6.0 Hz, MeNCH₂), 2.595 (t, 6 H, ³J_{HH} = 6.0 Hz, N(CH₂)₃); ¹³C{¹H} NMR (C₆D₆) δ 58.71 (N(CH₂)₃), 52.46 (MeNCH₂), 45.40 (NCH₃), 43.58 (N(CH₃)₂).

Attempted Preparation of 9. A solution of tren (1.499 g, 10.25 mmol) and triethylamine (3.536 g, 34.94 mmol) in 10 mL of THF was added to a suspension of TiCl₄(THF)₂ (3.336 g, 9.990 mmol) in 40 mL of THF. A red-orange precipitate formed immediately which was dispersed by placing the reaction vessel in an ultrasound cleaning bath. The reaction mixture was then stirred at room temperature for 1 day, filtered, and washed with THF (3×10 mL) to give 4.90 g of orange solid, in which Et₃NHCl was observed by ¹H NMR (DMSO-*d*₆) spectroscopy. The crude product was stirred with 100 mL of CH₃CN, at 65 °C, filtered warm, washed with warm CH₃CN, and dried *in vacuo* to give the orange product in quantitative yield. ¹H NMR (DMSO-*d*₆) δ 8.29 (s, br, 3 H, NH), 3.01 (s, br, 6 H, HNCH₂), 2.67 (s, br, 6 H, N(CH₂)₃); ¹³C{¹H} NMR (DMSO-*d*₆) δ 51.32 (N(CH₂)₃), 36.67 (HNCH₂).

Attempted Preparation of 10. A 2.5 M solution of *n*-BuLi in hexane (8.05 mL, 20.1 mmol) was added slowly to a stirred solution of 12 (1.55 g, 6.71 mmol) in 50 mL of toluene which had been precooled to -50 °C. The reaction mixture was allowed to warm to

room temperature where stirring was continued for 3.5 h. The solution was then cooled to -70 °C, and Ti(NMe₂)₄ (2.38 g, 7.12 mmol) was added. The color of the solution changed from yellow to brown. After the reaction mixture was stirred at -70 °C for 8 h, it was warmed to room temperature over a period of 3 h and stirred for an additional 85 h. The reaction mixture was then filtered, and the volatile components from the filtrate were removed *in vacuo* to give 2.0 g of a dark-red solid. Both the ¹H and ¹³C NMR spectra of the product in C₆D₆ showed very complicated resonance patterns.

i-Pr2-tren (12). To an ice-cooled stirred solution of tren (32.5 g, 0.222 mol) in an acetate buffer (sodium acetate, 81.0 g; acetic acid 225 mL; H₂O, 600 mL) was added 350 mL of acetone (4.73 mol). NaBH₄ (110 g, 2.91 mol) was added in small portions over a period of 9 h, and then a 20% (by weight) aqueous solution of NaOH (500 mL) was added resulting in the separation of an oily layer. This mixture was extracted by five 200 mL portions of Et₂O. The extract was dried with Na₂SO₄ and the Et₂O was removed under vacuum leaving a crude product which was distilled at 79-105 °C at 50 mTorr, giving a mixture of *i*-Pr₃-tren and *i*-Pr₂-tren, in the approximate ratio 3:2 based on ¹H NMR data taken in C_6D_6 . The mixture was then dissolved in 700 mL of hexane, and the resulting solution was stirred vigorously for 65 h with NaI (22.1 g). A white precipitate was filtered off, and i-Pr₃-tren was recovered from the filtrate upon evaporation of the solvent in vacuo. The white precipitate was a NaI adduct of *i*-Pr₂-tren as determined by its ¹H and ¹³C{¹H} NMR spectra in D₂O: ¹H NMR (D₂O) δ 2.93 (septet, 1 H, ${}^{3}J_{HH} = 6.3$ Hz, CH), 2.73 (t, 4 H, ${}^{3}J_{HH} = 6.5$ Hz, *i*-PrNCH₂), 2.68 (t, 2 H, ${}^{3}J_{HH} = 6.9$ Hz, H₂NCH₂), 2.60 (t, 4 H, ${}^{3}J_{HH}$ = 6.5 Hz, N(CH₂CH₂NH-*i*-Pr)₂, 2.53 (t, 2 H, ${}^{3}J_{HH}$ = 6.9 Hz, NCH₂- CH_2NH_2), 1.82 (s, 4 H, NH and NH₂), 1.05 (d, 12 H, ${}^{3}J_{HH} = 6.3$ Hz, CH₃); ¹³C{¹H} NMR (D₂O, C₆D₆ added to the D₂O as the reference) δ 55.02 (NCH2CH2NH2), 52.18 (N(CH2CH2NH-i-Pr)2), 48.71 (CH), 42.66 (*i*-PrNCH₂), 37.68 (H₂NCH₂), 20.48 (CH₃). Attempts to isolate *i*-Pr₂tren by ether extraction of a basic aqueous solution of the NaI adduct failed. Thus the NaI adduct of i-Pr2-tren was vacuum distilled at 70-76 °C at 5 mTorr to give a light yellow oil in overall 15% yield (based on tren): ¹H NMR (C₆D₆) δ 2.70 (septet, 1 H, ³J_{HH} = 6.3 Hz, CH), 2.57 (t, 2 H, ${}^{3}J_{HH} = 6.3$ Hz, H₂NCH₂), 2.55 (t, 4 H, ${}^{3}J_{HH} = 6.0$ Hz, *i*-PrNCH₂), 2.41 (t, 4 H, ${}^{3}J_{HH} = 6.0$ Hz, N(CH₂CH₂NH-*i*-Pr)₂, 2.28 (t, 2 H, ${}^{3}J_{HH} = 6.3$ Hz, NCH₂CH₂NH₂), 1.89 (s, 4 H, NH and NH₂), 1.05 (d, 12 H, ${}^{3}J_{\text{HH}} = 6.3$ Hz, CH₃); ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (C₆D₆) δ 57.85 (NCH₂-CH2NH2), 54.90 (N(CH2CH2NH-i-Pr)2), 49.16 (CH), 45.82 (i-PrN-HCH₂), 40.48 (NH₂CH₂), 23.47 (CH₃); MS(EI) m/z (ion, relative intensity), 231 (M + H⁺, 11), 200 (M - 2CH₃⁺, 4), 158 (M - CH₂-NH-i-Pr⁺, 33), 154 (10), 146 (13), 142 (5), 141 (11), 129 (8), 127 (19), 115 (5), 113 (6), 101 (32), 100 (25), 99 (49), 98 (6), 87 (33), 86 (CH₂-CH2NH-i-Pr⁺, 61), 85 (18), 84 (8), 74 (5), 73 (5), 72 (CH2NH-i-Pr⁺, 33), 71 (7), 70 (17), 58 (32), 56 (15), 44 (H₂NCH₂CH₂⁺ or H₂-NCHCH₃⁺, 100), 43 (*i*-Pr⁺, 20), 42 (14), 41 (8); CIMS *m/z* (ion, relative intensity) 231 (M + H⁺, 100); IR (neat between NaCl plates) 3356 m and 3284 m (ν (NH)).

Dimer 13. A solution of Ti(NMe₂)₄ (1.078 g, 4.808 mmol) in 15 mL of THF was added to a stirred solution of *i*-Pr₂-tren (1.108 g, 4.809 mmol) in 10 mL of THF. The initially yellow solution immediately turned red. The mixture was stirred at room temperature for 2 days after which the volatile components were removed in vacuo to give a red oily product. ¹H NMR spectra of the crude product in C₆D₆ revealed that it contained *i*-Pr₂-tren and 13 in an approximate ratio of 1:10. After addition of 7 mL of pentane to the crude product, an orange precipitate was obtained, which was filtered out, washed copiously with pentane, and dried in vacuo to give 0.38 g of product. A second crop of 13 (0.20 g) was obtained as red-orange crystals from a concentrate of the combination of the filtrate and the washings. The overall yield was 44%: mp: (dec) > 230 °C; ¹H NMR (C₆D₆) δ 4.47 (t, 2 H, ³J_{HH} = 5.7 Hz, H_g (for proton and carbon subscript labels, see the structural depiction in the Introduction), 4.00 (qq, 2 H, ${}^{3}J_{HH} = 6.6$ Hz, H_{f}), 3.31 $(dd, 4 H, {}^{3}J_{HH} = 5.6 Hz, H_{e}), 2.58 (m, 4 H, {}^{3}J_{HH} = 5.6 Hz, H_{d}), 2.35$ (t, 2 H, ${}^{3}J_{HH} = 5.7$ Hz, H_{c}), 1.40 (d, 6 H, ${}^{3}J_{HH} = 6.6$ Hz, H_{b}), 1.36 (d, 6 H, ${}^{3}J_{\text{HH}} = 6.6$ Hz, H_{a}); ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (C₆D₆) δ 60.74 (C_g), 56.11 (C_c), 54.91 (C_f), 52.64 (C_d), 49.23 (C_e), 24.22 (C_a), 24.08 (C_b); LRMS (EI) m/z (ion, relative intensity), 548 (M⁺, 7), 533 (M - CH₃⁺, 3); HRMS (EI) calcd for $C_{24}H_{52}N_8Ti_2$ (M+) m/z 548.32739, found 548.32745, error 0.12 ppm; IR (KBr) no ν (NH) (4000-3000 cm⁻¹).

⁽¹⁴⁾ Shriver, D. F.; Drezdon, M. A. The Manipulation of Air Sensitive Compounds; Wiley and Sons: New York, 1986.

⁽¹⁵⁾ Bradley, D. C.; Thomas, I. M. J. Chem. Soc. 1960, 3857.

⁽¹⁶⁾ Lensink, C.; Xi, S. K.; Daniels, L. M.; Verkade, J. G. J. Am. Chem. Soc. 1990, 111, 3478.

⁽¹⁷⁾ Wroblewski, A. E.; Pinkas, J.; Verkade, J. G. Main Group Chem., in press.

 Table 1. Crystallographic Data for 1

A REAL PROPERTY OF A REAL PROPER	
formula	$C_{11}H_{27}N_5Ti$
fw	277.3
cryst size (mm)	$0.50 \times 0.50 \times 0.25$
cryst system	monoclinic
space group	$P2_{1/c}$
a (Å)	7.9550(7)
b (Å)	10.546(2)
c (Å)	18.105(2)
β (deg)	97.365(8)
$V(Å^{3)}$	1506.4(3)
Z	4
$d_{\text{calcd}}(g/\text{cm}^3)$	1.223
$\mu (\text{mm}^{-1})$	4.719
λ (Cu Ka) (Å)	1.541 78
weighting scheme, w^{-1}	$\sigma^2(F) + 0.0003F^2$
final R indices (obsd data)	$R^a = 0.0373, R_w^b = 0.0549$
R indices (all data)	$R^a = 0.0396, R_w^b = 0.0554$
goodness-of-fit ^c	1.75
$a \mathbf{P} - \nabla \mathbf{E} = \mathbf{E} / \nabla \mathbf{E} + b \mathbf{P} = -$	$\sum (\omega \frac{1}{2} \left(\mathbf{E} - \mathbf{E} \right) \sqrt{\sum (\omega \frac{1}{2} \mathbf{E})}$

 ${}^{a}R = \sum ||F_{o}| - |F_{c}||/\sum |F_{o}|. {}^{b}R_{w} = \sum (w^{1/2}(|F_{o}| - |F_{c}|))/\sum (w^{1/2}|F_{o}|);$ w = 1/\sigma^{2}|F_{o}|. \$ Goodness-of-fit = (\sigma(w(|F_{o}| - |F_{c}|)^{2})/(m - n))^{1/2}.

Attempted Reaction of 13 with NH₃. Method A. NH₃ gas, which had been passed through KOH pellets, was bubbled through a solution of 13 in toluene- d_8 . The color of the solution faded from red-orange to yellow to colorless with time and a yellow-orange precipitate formed. Attempts to characterize the precipitate were not successful due to its insolubility in a variety of organic solvents, including DMSO- d_6 .

Method B: NH₃ gas (0.66 mL at room temperature and atmospheric pressure, 2.7×10^{-5} mol), which had been generated from a blue liquid-NH₃/Na solution, was added to a solution of 13 (0.0074 g, 1.35×10^{-5} mol) in 0.5 mL of C₆D₆. The intensity of the methyl proton resonances for the free ligand *i*-Pr₂-tren increased with time.

Method C: NH₃ gas (3.81 mL at room temperature and atmospheric pressure, 5.68×10^{-5} mol), which had been generated from a blue liquid-NH₃/Na solution, was added to a stirred solution of **13** (0.043 g, 7.8×10^{-5} mol) in 3 mL of toluene. The mixture was stirred at room temperature for 3.5 days. The color of the solution changed from redorange to yellow to colorless, and a yellow precipitate formed. The volatile components were removed *in vacuo* to give a yellow compound, which was insoluble in a variety of organic solvents.

Single Crystal X-ray Diffraction Study of 1. A crystal of 1 was attached to the tip of a glass fiber and mounted on a Siemens P4RA diffractometer for data collection at 213 ± 1 K. The cell constants for the data collection were determined from reflections found from a 360° rotation photograph. High-angle cell constants were determined from a subset of intense reflections in the $40.0-50.0^{\circ}$ 2θ range. Lorentz and polarization corrections were applied. A nonlinear correction based on the decay in the standard reflections was also applied to the data. A series of azimuthal reflections was collected for the sample, and a semi-empirical absorption correction based on the azimuthal scans was applied to the data.

The space group P_{21}/c was chosen based on systematic absences. This assumption proved to be correct as determined by a successful direct-methods solution and subsequent refinement. All non-hydrogen atoms were placed directly from the *E*-map. All non-hydrogen atoms were refined with anisotropic thermal parameters. All the hydrogen atoms were placed with C-H distances of 0.96 Å, and the methylene hydrogen atoms were refined as riding atoms with individual isotropic displacement parameters. The hydrogens of the methyl groups were initially refined as rigid groups in order to find their best torsional position, and then they were converted to riding atoms analogously to the hydrogens of the methylene groups.

Data collection and the structure solution were done at the Iowa State Molecular Structure Laboratory. Refinement calculations were performed on a Digital Equipment MicroVAX 3100 computer using the SHELXTL-Plus programs.¹⁸ Crystal, data collection, and refinement parameters are summarized in Table 1. Positional parameters are collected in Table 2, and selected bond distances and angles are listed in Table 3.

Table 2. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Coefficients (Å² x 10³)

-				
atom	x	у	Z	$U_{eq}{}^a$
Ti	1643(1)	1776(1)	1322(1)	19(1)
N(1)	-188(3)	506(2)	1828(1)	26(1)
C (1)	-1617(4)	1285(3)	1998(2)	37(1)
C(2)	-2104(3)	2177(3)	1352(2)	31(1)
N(2)	-571(3)	2591(2)	1063(1)	23(1)
C(3)	789(4)	-48(3)	2501(2)	39(1)
C(4)	1867(4)	987(3)	2906(2)	38(1)
N(3)	2639(3)	1746(2)	2362(1)	29(1)
C(5)	-713(4)	-451(3)	1243(2)	37(1)
C(6)	823(4)	-909(3)	915(2)	34(1)
N(4)	1966(3)	151(2)	858(1)	25(1)
C(7)	-979(4)	3592(3)	519(2)	32(1)
C(8)	4161(4)	2362(3)	2708(2)	44(1)
C(9)	3624(4)	-278(3)	727(2)	43(1)
N(5)	2997(3)	2934(2)	830(1)	27(1)
C(10)	3299(5)	4206(3)	1126(2)	45(1)
C(11)	3465(4)	2849(3)	81(2)	41(1)

^{*a*} Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table 3.	Selected	Bond	Lengths -	(Å)	and	Bond	Angles	(deg)	for 1	1

	-		
	Bond I	_engths	
Ti-N(1)	2.257(2)	Ti - N(2)	1.961(2)
Ti-N(3)	1.947(2)	Ti-N(4)	1.940(2)
Ti-N(5)	1.921(2)		
	Bond .	Angles	
N(1) - Ti - N(2)	75.6(1)	N(1) - Ti - N(3)	78.6(1)
N(2) - Ti - N(3)	118.7(1)	N(1) - Ti - N(4)	77.2(1)
N(2) - Ti - N(4)	116.6(1)	N(3) - Ti - N(4)	110.1(1)
N(1) - Ti - N(5)	174.0(1)	N(2) - Ti - N(5)	98.7(1)
N(3) - Ti - N(5)	106.0(1)	N(4) - Ti - N(5)	104.3(1)

Attempted Solution of the Crystal Structure for 13. Several crystals of 13 were mounted on a Siemens P4RA at both 213 and 298 K. The samples were indexed by a set of up to 15 reflections chosen from a 360° rotation photograph. None of the specimens diffracted well. The unit cell at 298 K was orthorhombic, a = 8.701 Å, b = 17.044 Å, c = 20.304 Å, and V = 3011.01 Å³. Axial photographs did verify an orthorhombic lattice, but they also revealed modulation and a possible superstructure along the *b*-axis. Further attempts to solve the structure were not made.

Results and Discussion

Syntheses. Although compound 1 was synthesized previously,^{11a} it contained small amounts of unknown impurities as determined by its ¹H and ¹³C{¹H} NMR spectra. Further purification of 1 was accomplished by separating the oily material from the high proportion of solidified product which formed when we carried out our earlier preparation. Using filter paper to absorb the oil followed by sublimation of the crude solid, and recrystallization of the sublimate from pentane, a 52% overall yield of 1 was obtained.

An attempt to prepare 9 was carried out by the direct reaction of tren with $TiCl_4(THF)_2$ in the presence of a base (reaction 1).

$$x_5Et_3N + (H_2NCH_2CH_2)_3N + TiCl_4(THF)_2$$
 THF

 $3 E_{t_3}NHCl + (9)_x + E_{t_3}N$ (1)

The ¹H NMR spectrum of the crude product in DMSO- d_6 revealed the presence of Et₃NHCl, which could be washed out by warm acetonitrile. However, the final product could not be sublimed; it is insoluble in a variety of organic solvents and it is only partly soluble in DMSO, indicating the formation of polymer or oligomer of **9**.

⁽¹⁸⁾ SHELXTL-Plus, Siemens Analytic X-ray, Inc., Madison, WI.

Scheme 2

Although *i*-Pr₃-tren could be synthesized as a major product at elevated temperature,¹⁷ a higher proportion of *i*-Pr₂-tren is generated at lower temperature (see Experimental). The isolation of *i*-Pr₃-tren from *i*-Pr₂-tren was achieved by the reaction of the mixture with NaI, in which *i*-Pr₂-tren preferentially forms an adduct with the NaI.¹⁷ In the present paper we confirm the presence of *i*-Pr₂-tren (**12**) in the adduct by both ¹H and ¹³C-{¹H} NMR spectra in D₂O and obtain **12** in 15% yield (based on tren) by vacuum distillation of its solid NaI adduct. Characterization of **12** was accomplished by ¹H and ¹³C{¹H} NMR and mass spectral analysis.

Compound 10 was chosen as a starting material for the attempted synthesis of 6, as shown in Scheme 1. Although similar reactions were successfully utilized to synthesize chlorotitanium-trisubstituted-tren complexes,^{19,20} we were unable to obtain 10 in this way and managed only to produce a mixture of unknown (oligomeric) compounds that exhibited over 40 carbon resonances (probably via HCl elimination from 10 or a precursor to it). This led us to consider synthesizing the analogue 11 which we thought might be more stable to elimination (i.e., of HNMe₂). However, the novel compound 13 was obtained, as shown upon NMR and mass spectral analysis. Unfortunately repeated elemental analyses for this complex were unsatisfactory, owing to its extreme air- and moisture-sensitivity. Attempts to synthesize a zirconium analogue by an analogous method has not been successful so far. A possible pathway for the formation of 13 may involve intermediate 11, formed via transamination, which is not stable because of the presence of an active amido-nitrogen proton which attacks the NMe₂ group allowing 13 to form with accompanying elimination of HNMe2. The latter process could occur via sequential nucleophilic attack of an amido nitrogen

Figure 1. Molecular structure of 1. The ellipsoids are drawn at the 50% probability level.

on the Ti of a second molecule of 11 or by a prior $HNMe_2$ elimination and intermolecular coupling process as indicated in Scheme 2. Partial evidence for this pathway is the observation that the ¹H NMR spectrum of an aliquot of the crude reaction mixture taken after 5 h of reaction time showed a new resonance at 3.34 ppm for an NMe₂ group and two new doublets at 1.26 and 1.22 ppm, respectively, for the *i*-Pr methyl proton resonances attributable to intermediate 11. These peaks (which were of low intensity) disappeared after 48 h of reaction time. Attempts to produce 6 by the reaction of 13 with ammonia as shown in reaction 2 failed, owing to the formation of what

appear to be polymeric products. Thus it is reasonable to assume that all the desired compounds 5-8 are unstable, due to the presence of an active proton on amido nitrogen and the possibility of NH_3 evolution and subsequent polymerization.

Crystal Structure of 1. The molecular structure of monomeric azatitanatrane 1 shown in Figure 1 features a central titanium atom in a slightly distorted TBP coordination environment. The molecule exhibits virtual C_s symmetry with the mirror plane passing through the N(1)-Ti-N(5) atoms and the C(1)-C(2)-N(2) arm. The N(1)-Ti-N(5) angle in 1 is not quite linear (174.0(1)°). The titanium atom is displaced from the plane formed by the three equatorial nitrogen atoms by 0.436 Å (sum of angles = $345.4(3)^{\circ}$) in the direction of the Me₂N group. It is interesting to note that the geometries around the equatorial nitrogens (average sum of angles = $358.1(3)^{\circ}$) and the axial Me₂N nitrogen (sum of angles = $358.3(2)^{\circ}$) are virtually the same, suggesting nearly equal π -donating opportunities for the two types of nitrogens to the titanium.

Often, axial bonds in TBP structures are longer than when the same linkage is in the equatorial position. This can be seen, for example, in the structures of $14-16^{21}$ However, axial bonds that are equal to or shorter than their equatorial counterparts are also reported, as was seen in the structures of 17^{22} and 18^{23} respectively. In 1 the Me₂N-Ti bond length (1.921(2) Å) is

^{(19) (}a) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Organometallics 1992, 11, 1452. (b) Cummins, C. C.; Lee, J.; Schrock, R. R.; Davis, W. M. Angew. Chem., Int. Ed. Engl. 1992, 31, 1501.

⁽²⁰⁾ Schubart, M.; O'Dwyer, L.; Gade, L. H.; Li, W.-S.; McPartlin, M. Inorg. Chem. 1994, 33, 3893.

⁽²¹⁾ Garant, R. J.; Daniels, L. M.; Das, S. K.; Janakiraman, M. N.; Jacobson, R. A.; Verkade, J. G. J. Am. Chem. Soc. 1991, 113, 5728.

⁽²²⁾ Menge, W. M. P. B.; Verkade, J. G. Inorg. Chem. 1991, 30, 4628.

shorter than the average $Ti-N_{eq}$ distance (1.949 (2) Å). Yet the $Ti-N_{eq}$ distance in **1** is not unusually short since it is within experimental error of the average $Ti-N_{eq}$ bond length for **19**

(1.939(4) Å^{11b}) and **20** (1.924(8) Å²⁰), slightly longer than that in 21 (1.920(6) $Å^{20}$), and longer than that for 22 (1.901(9) $Å^{20,24}$). Moreover, the Me₂N-Ti distance is shorter than the lower limit of the average for titanium amide complexes (mean distance = 1.939 Å²⁵). Interestingly, the transannular Ti $-N_{ax}$ distance (2.257 (2) Å) in 1 is also abnormally short since it is shorter than the lower limit of the average distance observed for Ti-coordinated tertiary amines (mean distance = 2.296 Å^{25}). The $Ti-N_{ax}$ bond length in **1** is within experimental error of that for 17 (2.264(3) $Å^{22}$) and 20 (2.227(11) $Å^{20}$), somewhat longer than that reported for **21** (2.229(6) $Å^{20}$), and considerably longer than that in 22 (2.209(9) $Å^{20,24}$). The Ti-N_{ax} bond in 1 is shorter than that in 18 (2.282(3) Å²³ despite the greater electronegativity of the oxygens in 18) and in 19 (2.451(5) $Å^{11b}$ which may be due to the steric demands of the SiMe₃ groups). The $Ti-N_{ax}$ bond length in 1 is also shorter than those in the titanatrane dimers 23^{26} (2.333 (1) Å and 24^{11a} (2.270 (2) Å).

This may be attributable to the electron density enhancement of the titanium owing to the expansion of its coordination number to 6. It was found by comparing the pairs of structures **17**, **18** and **23**, **24** that in each case the compound with the shorter $Ti-N_{ax}$ bond has a longer Ti-O bond distance trans to this bond.^{11a,22,23} By contrast the rather short $Ti-N_{ax}$ bond in **1** does not seem to lengthen the Ti-N bond trans to it.

NMR Spectra. Solution ¹H and ¹³C NMR spectra of azatitanatrane **1** exhibited characteristics of monomeric behavior. As is typical for azametallatranes, ^{11,13,19,20,27} the methylene protons of **1** constitute an AA'XX' spin system showing two virtual triplets in their ¹H NMR spectrum at room temperature in solution, as expected for virtual $C_{3\nu}$ symmetry. The overall symmetry in the solid state of **1** is C_s owing to the two-fold

(27) (a) Plass, W.; Verkade, J. G. *Inorg. Chem.* **1993**, *32*, 5153. (b) Plass,

W.; Verkade, J. G. Inorg. Chem. **1993**, 32, 5145.

Table 4. Correlation of ¹H and ¹³C NMR Chemical Shifts for 13

$\delta(^{13}\text{C}) \text{ (ppm)}$	$\delta(^{1}\mathrm{H})$ (ppm), assgnt ^a	carbon atom ^a		
	Methyl Groups			
24.08	$1.40, H_{\rm b}$	C_{b}		
24.22	1.36, <i>H</i> _a	C_{a}		
	Methylene Groups			
49.23	$3.31, H_{\rm e}$	$C_{\rm e}$		
52.64	$2.58, H_{\rm d}$	C_{d}		
56.11	$2.35, H_{\rm c}$	$C_{\rm c}$		
60.74	$4.47, H_{g}$	C_{g}		
	Methine Groups			
54.91	4.00, $H_{\rm f}$	$C_{ m f}$		

^{*a*} For atom-labeling scheme, see structure for **13** in the Introduction.

symmetry of the axial NMe₂ group. However, $C_{3\nu}$ symmetry is expected in solution at room temperature on the NMR time scale owing to rapid rotation of the NMe₂ group. Similar behavior was observed for the tin analogue of 1.²⁷

In contrast to the simple appearance of the ¹H and ¹³C{¹H} spectra of compound **1** in the methylene region, four signals in both the ¹H and ¹³C{¹H} NMR spectra for the methylene groups were observed in the case of **13**, reflecting its dimeric nature. The two methyl groups in each isopropyl substituent exhibited two doublets and two singlets in the ¹H and ¹³C{¹H} NMR spectra, respectively, indicating the diasterotopic nature of the isopropyl groups. Support for the dimeric structure of **13** stems from similar spectra observed for the silicon compound **25**

(which has been structurally determined by single-crystal X-ray diffraction)²⁸ except that the latter compound shows two multiplets for the methylene proton resonances of the nonbridging amido arms while **13** exhibits a multiplet (H_d) and one doublet of doublets (H_e) due to isochronous resonances in the four-spin system (see later).

The assignment of the signals in the ¹H and ¹³C{¹H} NMR spectra of **13** is based on integration, couplings in the ¹H NMR, ¹H¹³C heterocorrelated NMR, and ¹H¹H NOESY spectra. Cross peaks in the ¹H¹³C heterocorrelated 2D spectrum of **13** reveal the connectivities between the carbon and the proton signals (Table 4), in which each proton signal corresponds to a carbon resonance. However, it is difficult to assign specifically the signals of the methylene groups for both the ¹H and the ¹³C-{¹H} spectra. Therefore, a 2D ¹H¹H NOESY experiment was carried out. From these spectra (see Figure 2), the following coupling relationship can be observed:

From the observed through-space couplings $a, b \leftrightarrow e$ and $e \leftrightarrow f$, peak e can be unambiguously assigned as shown in the structure

⁽²³⁾ Naiini, A. A.; Ringrose, S. L.; Su, Y.; Jacobson, R. A.; Verkade, J. G. Inorg. Chem. **1993**, 32, 1290.

⁽²⁴⁾ The value reported in ref 20 is incorrect owing to a labeling error. (25) Orpen, A. G.; Brammer, L.: Allen, F. H.; Kennard, O.; Watson, D.

G.; Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1. (26) Harlow, R. L. Acta Crystallogr. 1983, C39, 1344.

⁽²⁸⁾ Wan, Y.; Verkade, J. G. Manuscript in preparation.

Figure 2. ¹H NMR spectrum of 13 in C_6D_6 (for labels see proposed structure 13 in the Introduction) and its unsymmetrized ¹H¹H NOESY 2D NMR spectrum.

proposed for 13 in the Introduction. Similarly, peak g is assigned based on the though-space couplings $f \leftrightarrow g$ and $a, b \leftrightarrow$ g. From selective decoupling ¹H NMR experiments, the remaining methylene proton signals can be assigned. The ¹³C-{¹H} NMR peaks of 13 can also be assigned from the ¹H¹³C heterocorrelated experiment (Table 4).

On the basis of the proposed dimeric configuration of 13, two types of d and two types of e proton resonances would be expected because of the presence of inner and outer methylene protons related to the mirror plane passing through the central Ti_2N_2 ring. Although a multiplet (eight lines) for the d proton resonances is seen in the spectrum in Figure 2 obtained on a

300 MHz spectrometer (probably owing to an AB system with additional coupling to e protons), only a doublet of doublets is observed for the e protons. This can be attributed to accidentally isochronous resonances for the two types of e protons which may be coupling equally to the two different d protons. This conclusion is confirmed by the ¹H NMR spectrum of 13 obtained at higher field (500 MHz), in which the same resonance patterns at the same chemical shifts and with the same coupling constants as those obtained at lower field (300 MHz) are observed, except that the signal for the d protons now shows a symmetrical multiplet with nine lines. It is noteworthy that both the proton and the carbon resonances for the methylene groups bound to the bridging amido nitrogens are deshielded by 1.90 and 20.26 ppm, respectively, relative to the corresponding signals for uncoordinated ligand 12 (see Experimental). This is probably due to the greatly reduced electron density on the bridging amido nitrogens occasioned by their coordination to two titanium metal centers. Interestingly, no exchange process was observed on the NMR time scale in the variable-temperature ¹H NMR spectra of 13 in toluene- d_8 from -78 to 100 °C, indicating a remarkably rigid structure in solution.

Conclusions. Azatitanatrane 13 arises from the transamination of Ti(NMe₂)₄ with the disubstituted tren ligand, 12. Compound 13 possesses a dimeric structure as determined by ¹H, ¹³C{¹H}, and ¹H¹H NOESY NMR and mass spectroscopic techniques. Its structure is rigid in solution as judged by VT ¹H NMR spectroscopy. It seems likely that the monomeric compounds 5-11 may be impossible to synthesize by either transamination or metathesis reactions because of the presence of an active proton on an equatorial nitrogen, thus leading to easy elimination of HZ, with subsequent polymerization or oligomerization.

Acknowledgment. We are grateful to the National Science Foundation and the Iowa State Institute for Physical Research and Technology for grant support of this work. We thank Dr. Victor G. Young, Jr., of the ISU Molecular Structure Laboratory for the structural determination of 1 and an interpretation of the reflection data collected for 13. Dr. Jiri Pinkas, formerly of our group, is thanked for his method of isolating *i*-Pr₃-tren from *i*-Pr₂-tren with the use of NaI.

Supporting Information Available: Text describing X-ray procedures, tables of crystal data, bond distances, bond angles, hydrogen atom positional and U parameters, and general displacement parameter expressions, and a packing diagram (10 pages). Ordering information is given on any current masthead page.

IC950096B